AMD Ryzen 7 7800X3D vs Intel Core i9-14900K
We’re going to assume that at this point you’re aware of the stability issues Intel and its partners have run into with some 13th and 14th-gen processors, primarily the Core i9-13900K and 14900K. The simplest explanation we can provide is this: Intel doesn’t clearly communicate to its partners what the default operating specifications are for their CPUs. Instead, they provide a series of guidelines, but even then, those are just guidelines. In reality, board makers have been free to do whatever they want, and indeed, they have.
Unlike AMD, Intel doesn’t certify motherboards, despite having their logo on the box. With no enforced specifications, whether for power limits or even safety settings, the entire platform has become a bit of a mess. We recently spoke with several of Intel’s partners, which gave us great insight into the issue. A number of engineers were all too happy to share details.
We’ve started to get a good idea of what’s happened and how Intel intends on tackling it, or rather deflecting any blame. We’ve also started to see a number of BIOS updates rolled out for LGA 1700 motherboards. However, despite Intel promising users this mess would be addressed by the end of May, that never really happened.
Intel’s Power Profiles Clarified
That said, we have at least received some clarification on what board partners will be implementing moving forward. It seems that the Core i9 parts, such as the 13900K and 14900K, will run at 253 watts for PL1 and PL2, despite some Z790 boards running the Intel ‘performance’ profile by default with their latest beta BIOS revisions. The performance profile will reduce the long-duration power limit to just 125 watts, which isn’t great and results in around a 15% performance loss for core-heavy workloads when compared to 253 watts.
Intel has communicated to board partners that setting PL1 to 125 watts is what they call “standard,” while 253 watts is “recommended.” Initially, MSI went with 125 watts for their default profile. At the time of writing this article, that’s still the case, but they tell us they will be opting for the recommended 253 watts in a future BIOS update.
So, months later, we finally have some power profiles from Intel, though it’s not entirely clear how they will be implemented yet. Therefore, we’ve decided to benchmark the gaming performance of both the “performance” and “extreme” profiles using the Core i9-14900K and compare that data with the Ryzen 7 7800X3D.
About a month ago, we did a similar test, but at the time it was unclear what was going to happen. We didn’t test the performance profile as that wasn’t a thing at the time; we still needed to hear from Intel. Even though our findings at the time were still accurate, we didn’t want to risk confusing readers with outdated information.
This updated version should be it. Regardless of how LGA1700 boards end up being configured, they will likely use either Intel’s performance or extreme profiles.
For testing, we’re using the MSI MPG Z790 Carbon WiFi motherboard with BIOS version 7D89v1C2, and the Core i9-14900K will be paired with DDR5-7200 CL34 memory. The Ryzen 7 7800X3D has been paired with 32GB of DDR5-6000 CL30 memory. The reason we’ve gone with faster memory for Intel is that all LGA1700 CPUs we’ve tested appear to work perfectly using 7200 memory, while AM5 processors are limited to DDR5-6000 for optimal performance. This allows for a 1:1 ratio with the memory controller and DRAM, which AMD claims is the ‘sweet spot’ for Zen 4 processors.
Finally, in total, we’ve tested 24 games using the RTX 4090 at 1080p, 1440p, and 4K. We’ll go over the individual data for about half a dozen of the games tested before getting into the breakdown graphs. Let’s now get to it…
Benchmarks
We’ll start by looking at the Assassin’s Creed Mirage results. Here we see that when using the extreme profile, at 253 watts, the 14900K is just 4% slower than the 7800X3D, or 8% slower when looking at the 1% lows.
When using the ‘performance’ profile, the average frame rate of the 14900K drops by a further 4%, but it’s the 1% lows that suffer the biggest hit, dropping by 10%. This means the 7800X3D is on average 8% faster than the power-limited 14900K using the performance profile, and up to 20% faster when comparing 1% lows.